NON-POLYNOMIAL CUBIC SPLINE APPROACH FOR NUMERICAL APPROXIMATION OF SECOND ORDER LINEAR KLEIN-GORDON EQUATION

نویسندگان

چکیده

Most of the fundamental theories and mathematical models engineering physical sciences are expressed in terms partial differential equations (PDEs). Several studies were carried out for numerical approximation second order linear Klein-Gordon equation. This study constructed a new technique The scheme was based on employing non-polynomial cubic spline method (NPCSM). time derivatives involved equation decomposed into first derivatives. decomposition generated system PDEs, where approximated by central finite differences . Three test problems considered illustration developed scheme. For different values spatial displacement , step size produced encouraging results which very much close to analytical solution. best observed accuracy machine precision.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

B-SPLINE COLLOCATION APPROACH FOR SOLUTION OF KLEIN-GORDON EQUATION

We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.  

متن کامل

b-spline collocation approach for solution of klein-gordon equation

we develope a numerical method based on b-spline collocation method to solve linear klein-gordon equation. the proposed scheme is unconditionally stable. the results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. easy and economical implementation is the strength of this approach.

متن کامل

The second-order Klein-Gordon field equation

We introduce and discuss the generalized Klein-Gordon second-order partial differential equation in the Robertson-Walker space-time, using the Casimir second-order invariant operator written in hyperspherical coordinates. The de Sitter and anti-de Sitter space-times are recovered by means of a convenient choice of the parameter associated to the space-time curvature. As an application, we discu...

متن کامل

Cubic spline Numerov type approach for solution of Helmholtz equation

We have developed a three level implicit method for solution of the Helmholtz equation. Using the cubic spline in space and finite difference in time directions. The approach has been modied to drive Numerov type nite difference method. The method yield the tri-diagonal linear system of algebraic equations which can be solved by using a tri-diagonal solver. Stability and error estimation of the...

متن کامل

Approximations for Linear Tenth-order Boundary Value Problems through Polynomial and Non-polynomial Cubic Spline Techniques

Higher order differential equations have always been a tedious problem to solve for the mathematicians and engineers. Different numerical techniques were carried out to obtain numerical approximations to such problems. This research work presented and illustrated a novel numerical technique to approximate the tenth-order boundary value problems (BVPs). The techniques developed in this research ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pakistan journal of science

سال: 2023

ISSN: ['0030-9877', '2411-0930']

DOI: https://doi.org/10.57041/pjs.v67i4.603